125 research outputs found

    Satellites and the BISDN: An overview of NASA R/D

    Get PDF
    NASA is currently the only U.S. government agency developing advanced technology on behalf of the commercial communications satellite industry. The Agency's commercial communications program includes several activities which are either directly or indirectly related to the potential use of satellites within a broadband integrated services digital network (BISDN). Lewis Research Center's Space Electronics Division is actively pursuing a number of thrusts aimed at the integration of satellites into the BISDN through the development of high-risk and proof-of-concept technology

    ACTS 118x Final Report High-Speed TCP Interoperability Testing

    Get PDF
    With the recent explosion of the Internet and the enormous business opportunities available to communication system providers, great interest has developed in improving the efficiency of data transfer using the Transmission Control Protocol (TCP) of the Internet Protocol (IP) suite. The satellite system providers are interested in solving TCP efficiency problems associated with long delas and error-prone links. Similarly, the terrestrial community is interested in solving TCP problems over high-bandwidth links. Whereas the wireless community is intested in improving TCP performance over bandwidth constrained, error-prone links. NASA realized that solutions had already been proposed for most of the problems associated with efficient data transfer over large bandwidth-delay links (which include satellite links). The solutions are detailed in various Internet Engineering Task Force (IETF) Request for Comments (RFCs). Unfortunately, most of these solutions had not been tested at high-speed (155+ Mbps). Therefore, the NASA\u27s ACTS experiments program initiated a series of TCP experiments to demonstrate scalability of TCP/IP and determine how far the protocol can be optimised over a 622 Mbps satellite link. These experiments were known as the 118i and 118j experiments. During the 118i and 118j experiments, NASA worled closely with SUN Microsystems and FORE Systems to improve the operating system, TCP stacks, and network interface cards and drivers. We were able to obtain instantaneous data througput rates of greater than 529 Mbps and average throughput rates of 470 Mbps using TCP over Asynchronous Transfer Mode (ATM) over a 622 Mbps Synchronous Optical Network (SONET) OC12 link. Following the success of these experiments and the successful government/industry collaboration, a new series of experiments, the 118x experiments, were developed

    Experience with Delay-Tolerant Networking from Orbit

    Get PDF
    We describe the first use from space of the Bundle Protocol for Delay-Tolerant Networking (DTN) and lessons learned from experiments made and experience gained with this protocol. The Disaster Monitoring Constellation (DMC), constructed by Surrey Satellite Technology Ltd (SSTL), is a multiple-satellite Earth-imaging low-Earth-orbit sensor network in which recorded image swaths are stored onboard each satellite and later downloaded from the satellite payloads to a ground station. Store-and-forward of images with capture and later download gives each satellite the characteristics of a node in a disruption-tolerant network. Originally developed for the Interplanetary Internet, DTNs are now under investigation in an Internet Research Task Force (IRTF) DTN research group (RG), which has developed a bundle architecture and protocol. The DMC is technically advanced in its adoption of the Internet Protocol (IP) for its imaging payloads and for satellite command and control, based around reuse of commercial networking and link protocols. These satellites use of IP has enabled earlier experiments with the Cisco router in Low Earth Orbit (CLEO) onboard the constellation s UK-DMC satellite. Earth images are downloaded from the satellites using a custom IP-based high-speed transfer protocol developed by SSTL, Saratoga, which tolerates unusual link environments. Saratoga has been documented in the Internet Engineering Task Force (IETF) for wider adoption. We experiment with the use of DTNRG bundle concepts onboard the UK-DMC satellite, by examining how Saratoga can be used as a DTN convergence layer to carry the DTNRG Bundle Protocol, so that sensor images can be delivered to ground stations and beyond as bundles. Our practical experience with the first successful use of the DTNRG Bundle Protocol in a space environment gives us insights into the design of the Bundle Protocol and enables us to identify issues that must be addressed before wider deployment of the Bundle Protocol. Published in 2010 by John Wiley & Sons, Ltd. KEY WORDS: Internet; UK-DMC; satellite; Delay-Tolerant Networking (DTN); Bundle Protoco

    Flying Drones Beyond Visual Line of Sight Using 4G LTE: Issues and Concerns

    Get PDF
    The purpose of this paper is to address the extent in which 4G LTE can be used for air traffic management of small Unmanned Air Vehicles (sUAVs) and the limitations and enhancements that may be necessary. We provide a brief overview of the communications aspects of the Unmanned Aerial System (UAS) Traffic Management Project followed by the evolving trends in air traffic management including beyond visual line of sight (BVLOS) operations concepts and current BVLOS operational systems. Issues and Concerns are addressed including the rapidly evolving global regulations and the resulting communications requirements as well LTE downlink and uplink interference at altitude and how that interference affects command and control reliability as well as application data capabilities and mobility performance

    Flying Drones Beyond Visual Line of Sight Using 4G LTE: Issues and Concerns

    Get PDF
    The purpose of this paper is to address the extent in which 4G LTE can be used for air traffic management of small Unmanned Air Vehicles (sUAVs) and the limitations and enhancements that may be necessary. We provide a brief overview of the communications aspects of the Unmanned Aerial System (UAS) Traffic Management Project followed by the evolving trends in air traffic management including beyond visual line of sight (BVLOS) operations concepts and current BVLOS operational systems. Issues and Concerns are addressed including the rapidly evolving global regulations and the resulting communications requirements as well LTE downlink and uplink interference at altitude and how that interference affects command and control reliability as well as application data capabilities and mobility performance

    Cellular Based Small Unmanned Aircraft Systems (sUAS) MIMO Communications

    Get PDF
    The use of remotely piloted unmanned aircraft systems/vehicles (UAS/UAV or drones) increases dramatically in recent years. This paper discusses the use of multiple-input and multiple-output (MIMO) technologies in cellular (i.e., LTE) based small UAS (sUAS) communications. More specifically, we will first provide background information about this work, followed by a review of state-of-the-art. Then, we will discuss the benefits of MIMO technologies and propose practical MIMO configurations (e.g., the type, size and number of antennas) that are suitable for NASA's sUAS research and operations. Finally, the design tradeoff among multiplexing, diversity, and interference/jamming cancellation will also be discussed

    Adapting clonally propagated crops to climatic changes: a global approach for taro (Colocasia esculenta (L.) Schott)

    Get PDF
    Clonally propagated crop species are less adaptable to environmental changes than those propagating sexually. DNA studies have shown that in all countries where taro (Colocasia esculenta (L.) Schott) has been introduced clonally its genetic base is narrow. As genetic variation is the most important source of adaptive potential, it appears interesting to attempt to increase genetic and phenotypic diversity to strengthen smallholders’ capacity to adapt to climatic changes. A global experiment, involving 14 countries from America, Africa, Asia and the Pacific was conducted to test this approach. Every country received a set of 50 indexed genotypes in vitro assembling significant genetic diversity. After onstation agronomic evaluation trials, the best genotypes were distributed to farmers for participatory on-farm evaluation. Results indicated that hybrids tolerant to taro leaf blight (TLB, Phytophthora colocasiae Raciborski), developed by Hawaii, Papua New Guinea and Samoa breeding programmes outperformed local cultivars in most locations. However, several elite cultivars from SE Asia, also tolerant to TLB, outperformed improved hybrids in four countries and in one country none of the introductions performed better than the local cultivars. Introduced genotypes were successfully crossed (controlled crossing) with local cultivars and new hybrids were produced. For the first time in the history of Aroids research, seeds were exchanged internationally injecting tremendous allelic diversity in different countries. If climatic changes are going to cause the problems envisaged, then breeding crops with wide genetic diversity appears to be an appropriate approach to overcome the disasters that will otherwise ensue.This research was financially supported by the Europe-Aid project ‘‘Adapting clonally propagated crops to climatic and commercial changes’’ (Grant No. DCI-FOOD/ 2010/230-267 SPC). Thanks are due to the 14 different countries technicians working on research stations and to farmers and their families for their enthusiastic contributioninfo:eu-repo/semantics/publishedVersio

    Structure-property relationships from universal signatures of plasticity in disordered solids

    Get PDF
    When deformed beyond their elastic limits, crystalline solids flow plastically via particle rearrangements localized around structural defects. Disordered solids also flow, but without obvious structural defects. We link structure to plasticity in disordered solids via a microscopic structural quantity, “softness,” designed by machine learning to be maximally predictive of rearrangements. Experimental results and computations enabled us to measure the spatial correlations and strain response of softness, as well as two measures of plasticity: the size of rearrangements and the yield strain. All four quantities maintained remarkable commonality in their values for disordered packings of objects ranging from atoms to grains, spanning seven orders of magnitude in diameter and 13 orders of magnitude in elastic modulus. These commonalities link the spatial correlations and strain response of softness to rearrangement size and yield strain, respectively

    Unveiling Novel RecO Distant Orthologues Involved in Homologous Recombination

    Get PDF
    The generation of a RecA filament on single-stranded DNA is a critical step in homologous recombination. Two main pathways leading to the formation of the nucleofilament have been identified in bacteria, based on the protein complexes mediating RecA loading: RecBCD (AddAB) and RecFOR. Many bacterial species seem to lack some of the components involved in these complexes. The current annotation of the Helicobacter pylori genome suggests that this highly diverse bacterial pathogen has a reduced set of recombination mediator proteins. While it is now clear that homologous recombination plays a critical role in generating H. pylori diversity by allowing genomic DNA rearrangements and integration through transformation of exogenous DNA into the chromosome, no complete mediator complex is deduced from the sequence of its genome. Here we show by bioinformatics analysis the presence of a RecO remote orthologue that allowed the identification of a new set of RecO proteins present in all bacterial species where a RecR but not RecO was previously identified. HpRecO shares less than 15% identity with previously characterized homologues. Genetic dissection of recombination pathways shows that this novel RecO and the remote RecB homologue present in H. pylori are functional in repair and in RecA-dependent intrachromosomal recombination, defining two initiation pathways with little overlap. We found, however, that neither RecOR nor RecB contributes to transformation, suggesting the presence of a third, specialized, RecA-dependent pathway responsible for the integration of transforming DNA into the chromosome of this naturally competent bacteria. These results provide insight into the mechanisms that this successful pathogen uses to generate genetic diversity and adapt to changing environments and new hosts
    corecore